The hallmark of AGC kinase functional divergence is its C-terminal tail, a cis-acting regulatory module.

نویسندگان

  • Natarajan Kannan
  • Nina Haste
  • Susan S Taylor
  • Andrew F Neuwald
چکیده

The catalytic activities of eukaryotic protein kinases (EPKs) are regulated by movement of the C-helix, movement of the N and C lobes upon ATP binding, and movement of the activation loop upon phosphorylation. Statistical analysis of the selective constraints associated with AGC kinase functional divergence reveals conserved interactions between these regulatory regions and three regions of the C-terminal tail (C-tail): the N-lobe tether (NLT), the active-site tether (AST), and the C-lobe tether (CLT). The NLT serves as a docking site for an upstream kinase PDK1 and, upon activation, positions the C-helix within the ATP binding pocket. The AST directly interacts with the ATP binding pocket, and the CLT interacts with the interlobe linker and the alphaC-beta4 loop, which appears to serve as a hinge for C-helix movement. The C-tail is a hallmark of AGC functional divergence inasmuch as most of the conserved core residues that distinguish AGC kinases from other EPKs are associated with the NLT, AST, or CLT. Moreover, several AGC catalytic core conserved residues that interact with the C-tail strikingly diverge from the canonical residues observed at corresponding positions in nearly all other EPKs, suggesting that the catalytic core may have coevolved with the C-tail in AGC kinases. These observations, along with the fact that the C-tail is needed for catalytic activity suggests that the C-tail is a cis-acting regulatory module that can also serve as a regulatory "handle," to which trans-acting cellular components can bind to modulate activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analogous regulatory sites within the αC-β4 loop regions of ZAP-70 tyrosine kinase and AGC kinases

The precise positioning of the flexible C-helix in the catalytic core is a critical step in the activation of most protein kinases. Consequently, the αC-β4 loop, which anchors the C-helix to the catalytic core, is highly conserved and mediates key structural interactions that serve as a hinge for C-helix movement. While these hinge interactions are conserved across diverse eukaryotic protein ki...

متن کامل

L 1 Protein kinase A : a dynamic and multivalent scaffold

cAMP-Dependent protein kinase has served as a prototype for the protein kinase superfamily in many ways. Its structures provide a comprehensive set of conformational states that reflect the different stages of catalysis, and recent holoenzyme structures have expanded our understanding of how PKA can recognize diverse proteins that dock to sites that are distal to the active site [1–4]. By compa...

متن کامل

Co-Conserved Features Associated with cis Regulation of ErbB Tyrosine Kinases

BACKGROUND The epidermal growth factor receptor kinases, or ErbB kinases, belong to a large sub-group of receptor tyrosine kinases (RTKs), which share a conserved catalytic core. The catalytic core of ErbB kinases have functionally diverged from other RTKs in that they are activated by a unique allosteric mechanism that involves specific interactions between the kinase core and the flanking Jux...

متن کامل

A functional genetic screen identifies regions at the C-terminal tail and death-domain of death-associated protein kinase that are critical for its proapoptotic activity.

Death-associated protein kinase (DAP-kinase) is a Ca(+2)/calmodulin-regulated serine/threonine kinase with a multidomain structure that participates in apoptosis induced by a variety of signals. To identify regions in this protein that are critical for its proapoptotic activity, we performed a genetic screen on the basis of functional selection of short DAP-kinase-derived fragments that could p...

متن کامل

Mechanism for activation of the growth factor-activated AGC kinases by turn motif phosphorylation.

The growth factor/insulin-stimulated AGC kinases share an activation mechanism based on three phosphorylation sites. Of these, only the role of the activation loop phosphate in the kinase domain and the hydrophobic motif (HM) phosphate in a C-terminal tail region are well characterized. We investigated the role of the third, so-called turn motif phosphate, also located in the tail, in the AGC k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 4  شماره 

صفحات  -

تاریخ انتشار 2007